Computation Partitioning in Mobile Cloud Applications: Modeling, Optimization and Evaluations
نویسنده
چکیده
The proliferation of sensors on mobile devices and ubiquitous network access to clouds enable many mobile cloud applications such as augmented reality (e.g., Google Glass), voice recognition (e.g., iPhone Siri), real time translation and so on. Computation partitioning between the mobile device and the cloud for these applications is an important and challenging research topic. Although there are works done on some aspects of this study, how to provide a systematic approach to support the partitioning for various models of applications and systems is yet to be addressed. In this thesis, we classify computation partitioning into different models by considering two dimensional properties: application dimension and system dimension. On application dimension, we do partitioning for two types of applications: computation dependent application and computation independent application. On system dimension, we do the partitioning for two types of systems: single user system and multiple users system. In this thesis, we focus on the study of three models: 1) computation independent application and single user system, named as computation offloading, 2) computation dependent application and single user system, named as single user computation partitioning, 3) computation dependent application and multiple user system, named as multiple user computation partitioning. The thesis contains three parts, which tackle the most urgent and significant issues in terms of the thee models. The details are as follows. First, we study the simplest model of computation partitioning, where the application is composed of independent computations and the partitioning decision is done for one single user. We take the RFID tracking as a case study, and demonstrate that computation partitioning can significantly improve the application performance. In particular, we consider the RFID system that attaches the RFID reader on the moving object, and deploys passive RFID tags in the environment. The moving object collects the noisy RFID readings, and perform continuous estimation of its position in real time. Traditional approaches such as Particle Filter (PF) can achieve high accuracy, but require a large amount of computations
منابع مشابه
Design and Evaluation of a Method for Partitioning and Offloading Web-based Applications in Mobile Systems with Bandwidth Constraints
Computation offloading is known to be among the effective solutions of running heavy applications on smart mobile devices. However, irregular changes of a mobile data rate have direct impacts on code partitioning when offloading is in progress. It is believed that once a rate-adaptive partitioning performed, the replication of such substantial processes due to bandwidth fluctuation can be avoid...
متن کاملA Computation Offloading Framework to Optimize Energy Utilisation in Mobile Cloud Computing Environment
ABSTRACT Newly emerged computing concept Mobile cloud computing, is a combination of mobile computing and cloud computing. Mobile Cloud Computing (MCC) enables mobile applications to get built, powered and hosted using cloud resources. As few years back mobile devices were merely used for making calls but nowadays enormous applications can be run on top of the mobile devices. Mobile systems, su...
متن کاملReduction of Energy Consumption in Mobile Cloud Computing by Classification of Demands and Executing in Different Data Centers
In recent years, mobile networks have faced with the increase of traffic demand. By emerging mobile applications and cloud computing, Mobile Cloud Computing (MCC) has been introduced. In this research, we focus on the 4th and 5th generation of mobile networks. Data Centers (DCs) are connected to each other by high-speed links in order to minimize delay and energy consumption. By considering a ...
متن کاملEnergy Efficient Adaptive Offloading For Mobile Cloud Computing Using Optimal Partitioning Algorithm
Mobile Cloud Computing is an emerging technology that integrates the cloud computing concept into the mobile environment. The limitations of mobile devices such as its storage capacity, battery lifetime can be overcome with the offloading of applications that is migration of large or complex computation to servers or cloud. This paper presents the adaptive offloading of the tasks using the opti...
متن کاملCloneCloud: Boosting Mobile Device Applications Through Cloud Clone Execution
Mobile applications are becoming increasingly ubiquitous and provide ever richer functionality on mobile devices. At the same time, such devices often enjoy strong connectivity with more powerful machines ranging from laptops and desktops to commercial clouds. This paper presents the design and implementation of CloneCloud, a system that automatically transforms mobile applications to benefit f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014